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Abstract 

Lusk & Halperin [1,2] offered a screening interval for the first digit Benford Profile that was basically 

founded on the usual parametric distribution that is associated with proportions. They created the 

precision using the wide-spanning 99thpercentile z-value. It was validated on the dataset offered by 

Reddy & Sebastin [3]. In this paper we offer a recalibrated screening protocol centered on the corrected 

Benford empirical bin-means founded only on the Empirical Distribution of additional Conforming and 

Non-Conforming datasets reported in the literature. We should find that, as expected, the initial 

Screening Interval is wider than the re-calibrated Screening Interval. This of course begs questions as to 

the False Negative and False Positive screening jeopardy. We present and discuss these relative error 

profiles in the context of the certified audit where the Benford Screenings are then used to identify 

Extended Procedure candidates.   

Keywords: Newcomb-Benford First Digit Profiles Empirical Re-Calibration. 

Introduction 

The importance of the Benford screening 

had been documented in numerous research 

reports. It has been a staple in forensic 

studies for more than two decades [3-9]. The 

definitive logical proof of Newcomb’s [10] 

observation & Benford’s re-observation and 

investigations were provided by Hill [11-14]. 

There is no reported FPE & FNE probability 

inferential basis that is derivable from the 

population logistics for the first digit profile.  

 

This is largely due to the nested conditional 

probabilities which have no discernable 

Bayes priors or, for that matter, conditional 

order effects down to the n-1st non-

independent action. However, Lusk and 

Halperin [1] in taking advantage of the 

Benford’s Bin-Reported illustrations 

corrected the reported probabilities. Also see 

Cho and Gaines [15] who report the same 

corrections however without details as to the  

computations. Lusk & Halperin then formed 

for this “Empirical” MLE central tendency 

profile the first digit profile screening 

intervals. This was done by creating 

variances formed around the z-calibration 

for a “wide-range” interval where they used 

the 99th Normal variate to form the precision 

controlling, of course, for the sample size per 

Bin rather than overall.  

 

An illustrative example will be helpful. 

Consider the “3” Bin. The 

counting/realization standard deviation of 

Bin 3 that contained 20,229 events, for 

which 2,562were identified as Bin 3 events, 

was: 0.332589. The 99% z-variate used was 

2.33. The precision for Bin 3 is: Precision1 = 

2.33 [0.332589 /2,562] = 0.01531 

                                                           
1
We elected to use the counting measures to compute 

precision as we started with the Bins because that is the 

simplest way to derive the correct frequencies from the 

Benford paper. However, the Bins also enable the direct 
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This gives the Alert-Window for the 

occurrences of “3” as recorded in Table 

2following as:Benford corrected frequency 

[Bin (3)]  0.01531, or [0.111340 to 0.141960] 

computed as: [0.126650   0.01531] 

 

We shall refer to this as the initial Benford 

Screening Intervals [IBSI]. They then tested 

the IBSI by scoring the 12 Non-Conforming 

datasets reported by Reddy and Sabastin [3].  

 

If a particular digit of these 12 Non-

Conforming datasets was not in the IBSI 

then that digit was scored as “Alert” 

otherwise “Non Alert”. There were 71 such 

“Alerts” of the 108 possibilities [12 × 9] 

giving an alert percentage of the test 

datasets of 65.7%. This was then the 

screening percentage used as the MLE cut-

point for a particular dataset to be screened. 

In summary, if there are more than five 

alerts [6, 7, 8 or 9] then the dataset is scored 

as Non-Conforming otherwise Conforming 

relative to the Benford Profile. All of the 

technical details for this computation are 

reported in their initial paper cited above. 

This is the point of departure of this 

research paper. 

 

Interest in the nature of this Benford 

Screening Interval has to do with identifying 

particular accounts in the audit context that 

are likely candidates for Extended 

Procedures [EP] investigations. This is a 

fundamental idea and underlies the spirt of 

AS2 and the current version AS5 

promulgated by the PCAOB: the audit 

licensing arm of Sarbanes-Oxley: 2002 [PL: 

107-204]. The logic is pristine: The audit is 

based upon on a random sample of accounts, 

usually sensitive accounts, which are those 

client accounts that affect the Current Ratio 

& Cash Flow from Operations. As the In-

Charge cannot investigate ALL of these 

accounts, due to time and resource 

constraints, some of the sensitive accounts 

must be selected for EP investigation. In this 

case, it is recommended that all the sensitive 

accounts be screened using the IBSI. Those  

                                                                                            
computation of precision using the developed frequency 

information for large sample sizes. For example, Precision is:  

𝑧 × √
𝑝 × (1 − 𝑝)

𝑛
 

For the example above: 2.33  [(0.126650(1  0.126650))^0.5] 

/ 2,562 = 0.01531. 

 

accounts flagged as Non-Conforming, 

respecting the Benford profile, are selected 

as viable candidates for EP investigations 

such as: Confirmations: [addressing the 

PCAOB Management Assertions of: 

Existence, Valuation& Rights, Tracing 

&Vouching:[addressing the PCAOB 

Management Assertions of: Completeness 

& Occurrence and often Categorization: 

[addressing the PCAOB Management 

Assertion of: Classification]. To say the 

least these EP Investigations are very costly 

and so if care is not taken in conducting EP 

investigations the resource control of the 

audit will be lost to the detriment of all 

concerned.  

Précis of the Research 

We will: 

 

 Take a set of Non-Conforming Datasets & 

a set of Conforming Datasets that are 

reported in the literature and use their 

empirical presentations to create central 

[Mean] tendencies, 

 Form, based upon these two profile sets, 

Absolute differences from the corrected 

Benford first digit central tendencies for 

each of the nine first digits, 

 Use these measured distances over the 

Non-Conforming and Conforming dataset 

store-form the screening intervals. Refer to 

this recalibration as: RBSI,  

 Test the two Screening Intervals, IBSI & 

RBSI, for their FNE and FPE screening 

jeopardies. This will be very important 

decision making information as L&H did 

not offer information as to the jeopardy 

profiles of the IBSI, 

 Considering the Monetary Risk of scripting 

wrong Audit Opinion and the high Cost of 

launching Extended Procedures 

investigations, offer a graphic and 

taxonomy of this Monetary Risk & EP Cost 

trade-off for guiding the selection of the 

particular Benford screening interval: IBSI 

or RBSI.  

The Test Datasets  

In forming the recalibration of the Benford 

Screeing Intervals, we used the empirical 

datasets provided by Lusk & Halperin [2] 

which is a rich set of independent data 

profiles as they were all taken from Benford 

studies reported in the literature over the 
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years. These data profiles are are available 

from the author for correspondence. There 

were 24Non-Conforming [NC] datasets that 

were so judged/ evaluated by the researchers 

reporting their results and 31Conforming 

datasets [C].  

 

In creating a new set of Benford screening 

intervals that are empirically driven, as 

opposed to the statistically based screening 

intervals of L&H, we computed the Mean 

profile for the NC, n = 24 and C, n= 31 

datasets. We then tested these two samples 

[NC & C] for non-directional comparisons 

respecting the Null of no difference for each 

of the nine first digits. Here we used the t-

test assuming unequal variances as the 

three standard tests for unequal variance of 

the SAS: JMPv. 13 Data Analysis 

platform:[Brown & Forsythe [16] Levene 

[17] and O’Brien [18] indicated that, 

excepting digit 4,all of the remaining eight 

digits had p-values lower than 0.25 for the 

Null of equal variance. In this case, for the 

mean tests, NC vs. C, there were four digits, 

{1, 5, 8& 9}, that had two-tailed p-values < 

0.15 certainly indicative of overall profile 

differences between the NC & C groups. This 

result is particularly impressive as the 

inferential Power respecting the p-value was 

relatively Low. The Mean Profile of these 

datasets is presented in Table 1. 

 

 

Table 1: The mean values of the first digit profiles for the non-conforming & conforming datasets 
Digits                                                   Mean Profile 

 NC, n=24 C, n=31 

1 0.259889 0.303876 

2 0.187514 0.181248 

3 0.112556 0.123635 

4 0.098403 0.094209 

5 0.115569 0.081526 

6 0.070972 0.065955 

7 0.049986 0.052737 

8 0.041958 0.049221 

9 0.063222 0.047653 

 

To be clear, the information in Table 1 shows 

the Mean values of the percentages, as 

reported in the literature, for the 24 

instances of Non-Conforming datasets as 

reported in Col2. In Col3 are the Mean 

values for the 31 instances of datasets that 

were reported in the literature as 

Conforming.  For example, for Digit 1 the 

Mean value of the 24 Non-Conforming 

datasets was 0.259889; the Mean for the 31 

Conforming datasets was 0.303876. There 

difference tested to be different; has it had a 

non-directional p-value 0.03. 
 

We used Table 1 as the base information to 

derive the modifications to the IBSI reported 

by L & H. Specifically, we took the 

information in Table 1 and formed, for each 

first digit, the difference between the Mean  

 

 

Corrected results reported by L&H and the 

NC & C profiles reported in Table 1.This 

produced two values for each digit; one of 

which is the directed distance between 

Corrected Mean and the Mean of the NC; 

the other being the distance between 

Corrected Mean and the Mean of the C. We 

then took the absolute value as there is no 

information relative to direction or in this 

case: the sign of the directional difference. 

Then for these two relative distances we 

took their average so as to smooth as much 

as possible the symmetry of the 

recalibration.  An example will be 

instructive. To elucidate the computations 

that were made to re-calibrate the IBSI to 

form the RBSI, consider the following 

profiling as reported in Table 2. 
 

Table 2: 
First 

Digits 

L&H Benford Screens Empirical Profile Average 

Abs Diff 

Re Calibrated BSI Precision 

Ratios LHS IBSI RHS IBSI NC, n=24 C, n=31 LHS RBSI RHS RBSI 

1 0.275377 0.303001 0.259889 0.303876 0.021994 0.267195 0.311183 1.59 

2 0.179919 0.209324 0.187514 0.181248 0.010241 0.184381 0.204863 0.70 

3 0.111340 0.141960 0.112556 0.123635 0.008554 0.118096 0.135204 0.56 

4 0.074990 0.106235 0.098403 0.094209 0.005694 0.084918 0.096306 0.36 

5 0.059684 0.091189 0.115569 0.081526 0.023112 0.052324 0.098548 1.47 

6 0.048467 0.080161 0.070972 0.065955 0.00415 0.060164 0.068464 0.26 

7 0.038147 0.070014 0.049986 0.052737 0.002719 0.051362 0.056800 0.17 

8 0.038945 0.070798 0.041958 0.049221 0.009282 0.045590 0.064154 0.58 

9 0.034558 0.066485 0.063222 0.047653 0.007785 0.042737 0.058307 0.49 
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Consider Digit 1 as shaded and bolded in 

Table 2. The Corrected Benford mean Profile 

as reported by L&H and Cho & Gaines is 

found by taking the simple average of the 

Left Hand Side [LHS] & the Right Hand 

Side [RHS] of the L&H intervals. This is: 

0.289189 [(0.275377 0.303001)/2]. This will 

be the mid-point of the recalibrated BSI 

which, of course, is necessary to avoid a 

shift-bias. The simple average of the 

absolute differences as found in Col6 of 

0.021994 is found as follows: The absolute 

difference between [0.259889 and 0.289189] 

is0.0293; this is the non-directional distance 

for the Non-Conforming datasets. For the 

other side of the interval, which is the 

Conforming dataset information, we have 

the absolute difference between [0.303876 

and 0.289189] which is 0.014687. This gives 

the average as 0.021994 

[(0.02390.014687)/2]. The next computation 

is to create the new empirical IBSI or RBSI. 

In the case of Digit1 this is 0.289189 

0.021994 which gives: 

0.267195&0.311183as reported in Col7 & 

Col8.  

 

In the manner that we created there-

calibration there is no reason to proffer that 

the transformation RBSI is isomorphic with 

the IBSI as created by L&H. To show that 

this is the case and also to give the profile 

information that relates to the precision 

expectation discussed above, we measure the 

precision of the two BSIs and formed the 

Ratio:  Precision [RBSI] / Precision [IBSI]. 

For example for Digit1 we find: 

[(0.3111830.267195)/2]/[(0.3030010.27537

7)/2]which gives a ratio of 1.59 as reported in 

whole percent in Col9 of Table 2. 

 

We see from these precision ratios that there 

is no evidence of a strict homomorphy to wit 

all the ratios would be the same constant, 

the special case of which would be 1.0, or, for 

that matter, an order homomorphy where all 

ratios would either be greater or less than 

unity. Also, we observe that overall the 

Mean/Median of the ratios over the nine 

digits is 0.69/0.56confirming that the IBSI is 

robustly slightly wider than RBSI overall.  

 

As a final indication of the relative 

performance of these two screening 

intervals, we indexed the various theoretical  

 

 

expectations: Log10(1 + 1/j); where j = 1, 2, - 

- -, 9 to have increments such that over 100 

changes these incremental adjustments 

would finally arrive at the most extreme 

case of a digital anomaly: the Hill(1998) 

Lottery expectation of 1/9. For example, for 

the first digit 0.30103 the incremental 

change to finally arrive at 1/9 over 100 

modifications is: [Log 10(1 + 1/1)  1/9]/100 = 

0.18992% 

 

In this case then we took these 100 datasets 

and tracked where the first transition point 

existed from the movement from Log10 (1 + 

1/j) to 1/9 for the IBSI and the RBSI. 

 

For the IBSI the switch or transition point 

was at the 32nd dataset; the first 32 datasets 

found that the IBSI contained at least 5 of 

the digital values and so were marked as 

Conforming. At the 33rd dataset the sixth 

digital value fell outside the IBSI and so 

overall the dataset was marked a Non-

Conforming. After the 32nd dataset set all of 

the indications were Non-Conforming. 

 

For the RBSI the switch point was at the 

18th dataset; the first 18 datasets found that 

the RBSI contained at least 5 of the digital 

values and so were marked as Conforming. 

At the 19thdataset the sixth digital value fell 

outside the RBSI and so overall the dataset 

was marked Non-Conforming. After the 18th 

dataset set all of the screening indications 

were marked as Non-Conforming. 

 

This profiling also mirrors the results 

discussed above that the IBSI is wider than 

the RBSI.  

Evaluation of Re-Calibration 

Results 

The logical Question from the recalibration 

is: What is the effect on the False Negative 

Jeopardy [FNJ] and the False Positive 

Jeopardy [FPJ]. Recall that the Benford 

intervals are screening intervals and the 

criteria that L&H suggest from their initial 

work is that if more than five of the nine 

first digits are outside of the IBSI then an 

Audit Alert is signaled. Using this alert 

profile then the FNJ is defined as: 

 

For a dataset, where the true state of nature  
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is Non-conforming, if the BSI exhibits five 

or fewer alerts then the BSI in use missed 

identifying a Non-Conforming Dataset. 

Thus we believe, incorrectly, that the dataset 

under scrutiny Conforms when this is not 

the case. 

In this spirit a FPJ is: 

 

For a dataset, where the true state of nature 

is Conforming, if the BSI exhibits more 

than five alerts then the BSI in use missed 

identifying a Conforming Dataset. Thus we 

believe, incorrectly, that the dataset under 

scrutiny Non-Conforms when this is not the 

case. 

 

A posteriori, as we have now information 

that the RBSI is narrow relative to the IBSI, 

we can anticipate that the FNJ will be 

relative high for the IBSI as a wider set of 

screens will create fewer alerts and so 

sometimes an NC dataset will not be flagged 

by the wider intervals or less discerning 

screen. The opposite will be the case for the 

RBSI which will flag more accounts 

however, this of course, will precipitate more 

Audit Alerts and so sometimes creating a 

high FPJ rate. To elucidate this important 

screen information considers Table 3. 
 

 

Table 3 FNJ & FPJ Profiles of the IBSI & RBSI 
State of Nature IBSI 

Alert% 

RBSI 

Alert% 

NC, n=24 41.7%[14/24] 100%[24/24] 

C, n=31 12.9%[4/31] 35.5%[11/31] 

FNJ Rate 58.3%[10/24] 0%[27/27] 

FPJ Rate 12.9%[4/31] 35.5%[11/31] 

 

Here we observe clearly the relative 

precision of the two BSIs. The IBSI which is 

the wider BSI has a relative high FNJ rate, 

58.3% as the wider digital screens do not 

correctly flag Non-Conformity. In this case, 

for the IBSI one invites the FNJ or believing 

that a dataset is Conforming when it is not. 

On the other hand, the wider digital 

intervals rarely identify a Conforming 

Dataset as Non-Conforming. In this case, 

only 12.9% of the time does the auditor 

conduct an investigation when one is not 

needed. 

 

For the RBSI which is a narrower screening 

interval there is no FNJ as all, 100%,of the 

Non-Conforming datasets are correctly 

flagged. So the auditor correctly identifies 

non-conformity with a high degree of 

accuracy. However, this does invite the FPJ 

as the narrow screening interval flags 

Conforming accounts as Non-Conforming 

35.5% of the time. This means that the 

auditor will incorrectly investigate about 

one-third of the time.  

 

This provides an interesting polemic for the 

auditor. Is it better to fail to identify Non- 

 

Conforming Accounts or to incorrectly 

investigate Conforming Accounts? The 

former invites writing the wrong audit 

Opinion for the audit; the latter risks an 

effective use of audit resources thus 

compromising the budget relative to the risk 

level of the audit. We will offer a discussion 

of this trade-off around an actual audit 

dataset provided by an Audit LLP to which 

we are an academic consultant.  

Working Illustration: The Inventory 

Profiling Case 

We have selected Inventory, as Inventory 

impacts the Current Ratio and so also Cash 

Flow from Operations. Indeed, over the last 

75 years, Inventory related defalcations 

dating back to the Billy Sol Estes scandal of 

the 1960s [19], rank second to Revenue 

Recognition defalcations. In this case, for a 

certification audit, the In-Charge had a data 

set of Average Values of the Inventory Bin 

items for the random sample of 342 active 

products for a manufacturing organization. 

The dataset had the following Benford 

Profile: 

 

 

Table 4: Inventory account digital profile, random sample: n=342 
Digits Inventory Profile 

1 0.35965 

2 0.15205 

3 0.12573 
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4 0.08772 

5 0.07602 

6 0.06725 

7 0.05848 

8 0.02924 

9 0.04386 

 

As this is a sensitive account and may likely 

have a high risk relative to scripting the 

wrong opinion there is likely a preference to 

be attentive to the FNJ. In this case, the 

auditor will likely prefer the RBSI which is 

narrower and so will flag more digits and so 

is more likely to flag an account for an EP 

investigation. We passed this Inventory 

dataset through both screens as an 

illustration of the profiling differential that 

is likely to be in evidence. For the dataset in 

Table 4the IBSI flags Digits {1,2 & 8} as 

Non-Conforming and so the dataset is 

recorded as Conforming overall as the 

number of Alerts was < 6. For the RBSI, the 

narrower of the two, there were four digits 

flagged: Digits {1, 2, 7 & 8}. So here again we 

see the consistent precision differential 

noted above.  

 

However, overall both screening intervals 

mark the Inventory dataset as Conforming. 

This is an important point. It is NOT that 

the RBSI will flag all accounts as Non-

Conforming only that the RBSI screening 

works in the direction of guarding against 

the FN screening error which is 

demonstrated in that the RBSI flags four 

digits and IBSI flags only three. For this 

audit, as a point of information, the Audit 

Opinion written was a Clean Opinion so the 

fact that the sensitive Inventory account was 

not labeled as Non-Conforming and so did 

not require EP investigation is consistent 

with the facts of the audit.  

 

With this as background context, let us 

consider the rationale that may be used in 

arriving at a decision as to which of the two 

BSI is appropriate in the overall audit 

context. This decision depends essentially on 

the relationship among the Monetary Risk in 

scripting the wrong Audit Opinion, the Cost 

of Extended Procedure investigations, the 

FN & the FP screening jeopardy. These 

relationships are illustrated in Figure A. 

 

We have arrived at this configuration 

presented in Figure A after a series of 

discussions with numerous colleagues who 

are in the audit milieu both in public 

accounting, forensic investigative services, 

and in internal audit in the USA and in the 

Euro-Zone. 

 

 
 
            Figure 1:  A Trade-Off the Cost of Monetary Risk & Extended Procedures Cost 

 

We offer out thanks for their options and 

council. In the context of this graphic, we 

recommend that the Auditor reflect on the 

decision-making zones for considering the 

use of Extended Procedures. This is a four 

coordinate grid where the Columns are: The  

 

 

Monetary Risk of Offering an Incorrect 

Opinion. The Rows are the Cost of Extended 

Procedure Investigations. The context here is 

NOT the aggregation of all the various 

decisions that are to be made over the audit;  

rather, it is the decision that needs to be 

made for the particular data set under the  

• High Monetary Cost 
of Incorrect Opinion 
& High Cost of 
Extended Prodecures 
Investigation 

• Low Monetary Cost 
of Incorrect Opinion 
& High Cost of 
Extended Prodecures 
Investigation 

• High Monetary Cost 
of Incorrect Opinion 
& Low Cost of 
Extended Prodecures 
Investigation 

• Low Monetary Cost 
of Incorrect Opinion 
& Low Cost of 
Extended Prodecures 
Investigation 

Show Best 
Practices EP 
Sensitivity 

Must 
Effect EPs 

Must Effect 
EPs But on 
a Limited 
Basis  Rarely Effect an 

EP Investigation 
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Benford Screening Protocol. It is important 

to realize that there are marked 

asymmetries in Figure A. This, by design, 

reflects the usual or expected jeopardy 

involved in the EP decision. To illustrate the 

usual practical asymmetry in this most 

critical decision context we have formed the 

five shapes –The four shaded areas or the 

defined decision-making zones; the fifth 

being the spaces not covered by the 

definitive shapes. This fifth zone reminds 

the auditor that there is the possibility that 

there is not sufficient information to make a 

reasoned decision regarding the selection of 

the most appropriate BSI. This, of course is 

the practical reality of decision-making 

under Knighting Uncertainty where a 

decision is made, often randomly, to collect 

information for developing future decision-

making intel. This is often the case for new 

clients in developing industries. 

 

For the four scripted zones of Figure A, the 

most prevalent or dominant zone according 

to our colleagues in an expected frequency 

sense is where that cost of EP is High and 

the Risk of an adverse monetary effect 

overall is Low. In this case, then, prudence 

would dictate that Rarely would EP be 

launched by the auditor.  

 

For example, consider the investigation of 

Petty Cash Vouchers as drawn from the 

various funds held throughout the 

organization. The Monetary Risk of a 

misstatement of such a magnitude that 

investors’ behavior would be affected is 

likely very Low effectively by definition. For 

the Cost of EP, the other consideration, the 

cost of a careful EP examination where 

selected Petty Cash transactions are 

vouched in an  to  [Alpha to Omega] sense 

would likely be very large given the usual 

cost of billing even the junior staff assigned 

to the audit. On balance then considering 

the Monetary Risk of a Material Error to 

have found its way into the Financials and 

the Cost of Effecting an EP Investigation 

seems to justify the Rarely Effect an EP 

Investigation designation.  

 

This is certainly the case if there were 

compensating controls in the COSO sense. 

For this reason, our colleagues suggested 

that in their audit experience the block:  

 

Rarely Effect an EP Investigations likely 

to be the most prevalent of the four. 

 

We are suggesting that Figure A can be used 

as a guideline in forming the decision as to 

which BSI to use for the audit. As an 

operational imperative, to wit a constraint, 

in this regard, which is certainly implied by 

theAS5 of the PCAOB, although never 

expressed as such, is that: Switching 

screening BSI models invites consistency 

issues just as it does if the auditor perceives 

that the client is selecting GAAP versions to 

manipulative end. Therefore, the auditor 

must in a compliance sense, usually make 

one screening model selection for the 

particular audit and remain with that BSI at 

least during the execution of the audit to the 

scripting of the final report.  

 

As for using Figure A as a guideline, the key 

issue is the perceived operative jeopardy. In 

this regard, there is usually a trade-off in 

the relative jeopardies. For example, in the 

expert judgement of the auditor IF: 

 

 The FN Screening Jeopardy should be 

attended to-to wit minimized-then tacitly 

the auditor is usually accepting a 

relatively larger FP Screening jeopardy, or   

 The FP Screening Jeopardy should be 

attended to-to wit minimized-then tacitly 

the auditor is usually accepting a 

relatively larger FN Screening jeopardy.  

 

By examining the relative expected 

quadrants in Figure A, the In-Charge can 

first decide which is the most critical 

Screening Jeopardy for “all” the sensitive 

accounts screened using the BSI.  

 

This is an overall test consideration for the 

general risk level of the audit. This means 

that the In-Charge will consider all the 

information available regarding the nature 

of the audit and the related general risk 

level, including, of course, the number of and 

the nature of the AIS controls for the 

sensitive accounts; with this pre-audit AP-

information the auditor will consider the 

various quadrants of the Monetary Risk and 

the Cost of Extended Procedures of Figure A 

to arrive at the nature of the Screening 

Jeopardy that is likely to be the one that  
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needs attention in the execution of the audit. 

It is possible to form a simple guide from 

Figure A that gives a taxonomy-grid relative 

to the FNJ & FPJ: 

 
Table 5: Taxonomic re-casting of figure A 

Consideration Dimensions Low Monetary Risk High Monetary Risk 

Low EP Cost No Preference between a FN or FP 

Jeopardy: iBSI or rBSI 

Attend to the FN Jeopardy accept FP 

Jeopardy: rBSI 

High EP Cost Attend to the FP Jeopardy accept FN 

Jeopardy: iBSI 

No Preference between a FN or FP 

Jeopardy: iBSI or rBSI 

 

If, in the main, the sensitive accounts fall 

into the Rarely Effect an EP Investigation 
quadrant which is where there is Low 

Monetary Risk but High EP cost then 

prudence may suggest that the Benford 

Screen that acts to minimize the FP BS 

jeopardy is preferred; in this case the IBSI 

which is the wider of the two BSI choices. If, 

on the other hand, the sensitive accounts are 

in the main in the Must Effect EPs 

quadrant where there is High Monetary risk 

but Low EP cost then prudence may suggest 

that the Benford Screen that acts to 

minimize the FN BS jeopardy, the RBSI, is 

preferred. In the other two cases, effectively, 

there is not likely to be a differential 

preference to the selection of the Benford 

Screen; either the IBSI or the RBSI will 

likely suffice in the audit context.  

Conclusion& Outlook 

Conclusion in this research report we offer 

an alternative set of error screening profiles, 

called RBSI, based upon (i) the work of Lusk 

& Halperin [1] who offered the IBSI and, of 

course, (ii) upon the Empirical results of 

Benford (1938). The important implication of 

developing the RBSI is that now there are 

now two BSIs the auditor must select a 

particular BSI. In this regard we have 

developed a simple taxonomy or protocol to 

guide the selection of a particular BSI in the 

particular audit context. The operational 

protocol is formed around balancing the Cost 

of Extended Procedures investigations 

relative to the Monetary Risk of Scripting 

the wrong Audit Report for the two required 

PCAOB Opinions: The Standard Financial 

Assurance:[The Financials of the Client are 

fair representations of the results of 

Operations; Qualified; Adverse or 

Disclaimer] and the COSO Opinion: 

[Management’s System of Internal Control 

over Reporting is adequate, Adverse and 

Disclaimer]. To this end, we examined the 

two screening intervals: IBSI&RBSI for  

 

 

their FN & FP Jeopardy profiles. We then 

offered a graphical context and a related 

taxonomy to guide the audit In-Charge in 

selecting the particular screening interval 

that seems most appropriate in the audit 

context given that logically one cannot 

change the screening measure over various 

account typologies.  

 

Finally, we offer the Appendix of Lusk and 

Halperin [2] that is an excellent summary of 

the nature of the processes that are typically 

associated with the generation of 

Conforming and Non-Conforming data sets. 

We offer this as an excellent source 

document for better understanding the way 

that digital profiles seem to be generated 

and this may aid the auditor in selecting the 

BSI for EP screening.  

 

Outlook As for the future, we hope that as 

more audit LLPs move to use digital profiles 

in screening and so selecting accounts for EP 

investigations that such Conforming & Non-

Conforming audit datasets are made 

available for research purposes. We would be 

delighted to accept such datasets and make 

them available. This would greatly add to 

the calibration of the triaging between the 

Conforming & Non-Conforming audit 

datasets. 
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Appendix Literature References for Examples of Conforming or Non-Conforming Data 

Generating Processes: Lusk & Halperin (2014b) 
General Conditions for Observing Conforming Datasets Selected References 

Mixing Property- - - if distributions are randomly selected and random 

samples are taken from each of the distributions, then the frequency of digits 

of this combined set will converge to Benford's distribution even if the separate 

distributions deviate from Benford's distribution. Cho & Gaines (2007, p.219). 

Bradley and Farnsworth (2009); Cho & Gaines 

(2007); Fewster (2009); Hill (1995a,b, c& 1998); 

Ross (2011) 

Base Invariance Property Under certain restrictions, if the distribution of 

a random quantity remains unchanged under a change in scale (e.g., 

changing from miles t0 kilometers), then observations of that random quantity 

will follow Benford’s Law. This is a desirable ‘invariance’ property in that, like 

any natural law, it indicates the measurement scale should not dictate 

whether or not a significant digit law holds for a particular data set. Bradley 

and Farnsworth (2009, p.4) 

Allaart (1997); Bradley and Farnsworth (2009); 

Hill (1995a,b,c& 1998); Ross (2011) 

Examples of Processes Likely to generate Conforming Datasets 

Fun with Numbers Exercises: We use in our course three such series: Uniform Unit-Random Numbers raised to integer 

powers.[AS], Geometric(k) Processes. We use f(k) =3𝑘.[D : Di],&Fibonacci series [F(k), k = 102 (trials starting at 0,1)].[R]; Datasets 

aggregated over many different sources: Population counts over many counties.[N : F]; Datasets influenced by many changing 

factors: Stock Indices.[L : NM : HR]; Numbers that result from mathematical combination of numbers: Basically transactional AIS 

data (e.g., quantity x price).[DHP : RS]; and finally, Large datasets or data with positive skew[Mean >> Median].[DHP] Also, of 

course, examine the 20 datasets that Benford (1938, Table 1, p. 553) collected; they are most instructive.  

 

Examples of Processes NOT Likely to generate Conforming Datasets 

Fabricating Data: Toxic release data.[MH], and Bidding conspiracy.[G]; Boundary-Level Data: Prices of low cost goods, usually set 

at xx.99.[LH : DHP], and Geo-political boundaries.[F]; Administrative limits: Institutional constraints on spending.[N : RS]; Forms 

used for Accounting Control: Checks, Issuing firm invoices & Pre-numbered forms.[DHP : RS]; Random or Uninstructed Guessing: 

Individuals attempting to replicate randomness.[H]; Screening or strategic modifying of legitimate transactions: Kickbacks and 

Lapping[Individual Postings].[RS]; Manipulation of data to facilitate reporting: Rounding. [RGBE]; Small datasets.[DHP : NM] 

Reference Legend: [AS]:Adhikari&Sarkar (1968); [D]Duncan (1969); [Di]:Diaconis (1977); [DHP]:Durtschi, Hillison&Pacini (2004); 

[F]:Fewster (2009); [G]:Giles (2007); [H]:Hill (1998); [HR]:Hickman & Rice(2010); [L]:Ley (1996); [LH]:Lusk &Halperin (2014a); 

[MH]:Marchi& Hamilton (2006); [N]:Nigrini (1996 &1999); [NM]: Nigrini& Mittermaier (1997); [R]:Raimi (1969 &1976); 

[RS]:Reddy &Sabastin (2012); [RGBE]:Rauch, Göttsche, Brähler& Engel (2011). 

 

 

 

 

 

 

 

 


